
1

SESoS Workshop, ICSE2016

© 2005 - present, Dewayne E Perry

ARiSE, UT Austin

Robert Watson, Sutirtha Bhattacharya
Dewayne E Perry

Center for Advanced Research in Software Engineering (ARiSE)
The University of Texas at Austin

Systems of Systems and
Statically Defined Dynamic

Architecture Evolution

ARiSE, UT Austin

2

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Introduction
➜ Context: NASA Manned Space exploration

Ä Earthbound control center no longer feasible
Ä Will need control center and other systems onboard
Ä Will need to dynamically evolve the systems of systems

➜ Systems of components
Ä Compositions of components
Ä Component interaction
Ä Component and system/architectural evolution
Ä Typically single thread of execution

➜ Systems of Systems
Ä Compositions of Systems of components
Ä Systems interactions
Ä Systems of Systems and architectural evolution

3

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Research Background
➜  Simulation language and System

Ä NASA specific, but sufficient to task
Ä Governed by a very flat architecture/design description

Ø  For components
Ø  For interactions
Ø  For topology
Ø  For scheduling

Ä Automatically generates simulation system and schedules
Ä Provides execution and visualization environment

➜  Goals of research
Ä Reverse engineer existing simulations to create architecture models

Ø SDP – an analysis tool for reverse-engineering exisiting flat simulation
descriptions to provide

ü Relationship descriptions
ü Visualizations of the concrete architecture of the simulation

Ä Create architecture model and support to create simulations via
architecture descriptions

Ø Archpad – a graphical architecture modeling system
ü Tailor to creating simulation architecture models
ü Basis for generating simulations

4

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Abstract Architecture Model
➜ Model consists of three abstract constructs

Ä Arch-element
Ø A component (data or processing) or a connector

Ä Arch-composition
Ø Represents the substructure of an arch-element

Ä Arch-region
Ø An arbitrary collection of arch elements
Ø Arch-regions may overlap, contain or be contained in other

arch-regions
➜ Arch-element is the basic architecture component

Ä Arch-element =
(name,
 {service-specifications},
 {general-constraints},
 {dependency-specifications}

)
➜ General constraints apply to the arch-element as a

whole

5

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Abstract Architecture Model
➜ An arch-composition is a set of elements together

with mappings as to how they relate to each other
Ä Arch-composition

(name,
 {arch-elements},
 {mappings}

)
Ä Mappings accomplish several things

Ø Map an sub-arch-element service-specification to the arch-
element service specification

ü ie, indicate which service specifications are used to satisfy the arch-
elements interface

Ø Map internal satisfaction of dependency-specifications to their
associated service-specifications

Ø Map unsatisfied service-specifications to the arch-element
interface specification

Ø Map general-constraint satisfaction
Ø Map unsatisfied general-constraints to the arch-element

interface

6

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Elements in the Simulation World
➜ Basic and composite elements

Ä May be both depending on use in a particular architecture
configuration
Ø In one simulations may be treated as a basic component (eg,

the Crew Exploration Vehicle - CEV)
Ø In another it may be that we need to consider its constituent

component (CEV as stage 1 rockets and astronaut capsule, eg)

➜ Basic architecture elements are physical objects
Ä Such as the CEV or earth

➜ Basic elements are active or passive
Ä Eg, the CEV is active, earth passive
Ä Passive elements often contexts for active elements
Ä Passive elements often sources of constraining influences on

active objects (as the earth is on the CEV, eg)

7

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Elements in the Simulation World
➜  A product line style-like organization

Ä Commonality: architecture components used in a variety of
simulations

Ä Variability: architecture components specifically for certain
simulations

➜  Schedules are critical for simulations
Ä Envisioned as a general-constraint
Ä Also for real-time systems
Ä Schedules for various levels of the simulations

Ø Micro-level schedules for individual components
Ø Macro-level schedules coordinating multiple components
Ø Over all schedules governing sequencing phases of a simulation

➜  Motivation for the notions of configurations
Ä Specific physical events when the “world” changes

Ø  Eg, failures, transitioning from earth to space
Ø  Eg, de-coupling the rocket stage from the capsule
Ø  Eg, docking at the space station

Ä May need to represent sequences, trees or graphs of events

8

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Specializations of AAM
➜ Architecture Transition Connectors

Ä Define the interactions between architectures
Ä Governs the transition of control and data between

architectures
➜ Graphs of architectures represent a (projected)

history of the simulation
Ä Sequences represent sequences of events
Ä Trees represent sequences of events that include choices
Ä Graphs represent sequences of events with choices/merges

➜ An architecture of architectures graph (AAG)
represents a complete simulation
Ä Arch-archs-graph =

(name,
 {arch-configurations}
 {thread-bindings}
 {schedules}

)

9

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Specializations of AAM
➜ The thread bindings of an ACG

Ä Tie individual AC threads together across the architectural
configuration graph
Ø Some threads stop executing
Ø Some threads continue
Ø Some threads start up

Ä Defines the actual execution of threads where the AC
threads bindings merely define the potential threads in a
configuration

➜ Schedules in an ACG
Ä Define when the ACs begin and end

➜ Execution semantics assumptions wrt data:
Ä All data is “current” with in a thread
Ä No “own” data
Ä Shared data between threads is “read only”
Ä If want writeable “global” data, need critical sections

10

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Architecture-of-Architectures
➜ Problem domain: NASA M.E. simulators

Ä Exhibit a varying architecture as simulated vehicles
reconfigure in-flight

Ä Each architecture describes the simulator and simulated
system over an interval of time

Ä Architectures share common sub-architectural elements
Ä An architecture-of-architectures approach allows common

elements to be defined once
Ä Changes to one element propagate to all architectures

11

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Dynamic Architectural Change

•  Examples of
architectural change
from Apollo and
Shuttle

12

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Relationships Among Sub-architectures
➜ Most sub-architectures are the product of a physical

transformation of an existing architecture
Ä Differences tend to be incremental derivations
Ä Substantial redundancy exists among sub-architectures

➜ Long duration missions will exhibit many sub-
architectures requiring considerable effort:
Ä In development of sub-architectures
Ä In maintenance of sub-architectures

13

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Architectural Transitions
➜ To avoid development and maintenance of highly

redundant sub-architectures we propose connectors
among sub-architectures: architectural transitions
Ä Transitions describe how one sub-architecture differs from

another
Ä Descriptions can be minimal—they describe one temporal

change exhibited by a vehicle in flight

➜ Transitions are reusable—they can be applied to more
than one source architecture

14

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Architectural Transitions
➜ Architectural transitions reduce redundancy

Ä Potentially, only the initial vehicle configuration has a full
sub-architectural description

Ä Other sub-architectures are derived by applying transitions
to the initial and derived architectures

➜  Example:
Ä Initial configuration, vehicle on-pad (pre-launch)
Ä A transition describes differences from post-launch

configuration
Ä Another transitions describes changes incurred by stage 1

booster separation

15

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Example Architecture Graph

16

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Elements of a Transition
➜ Transition predicate and effector function
➜ Predicate:

Ä Selects architectures valid for application of the transition
Ä Iff the predicate of transition t holds for some sub-

architecture c, then there is another sub-architecture c'
defined by the application of the effector function of t to
c.

17

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Elements of a Transition
➜ Effector function:

Ä Defines a sub-architecture as a variation on an existing sub-
architecture

Ä Captures only the differences between a source architecture
and a derived architecture

Ä May not be idempotent
➜ A single transition may apply to more than one source

architecture
Ä Increases transition complexity but reduces redundant

specification
Ä Example: the launch abort transition can be initiated from

multiple vehicle configurations

18

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Implementation
➜ Implemented with an architectural meta-language
➜ Currently utilizes a procedural description
➜ Meta-language will allow non-procedural descriptions
➜ Currently, predicate and effector computations are

not separated

19

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Example Transition
➜ conf: architecture to be transformed
➜ rename(): Provides a name for derived
➜ return(); Provides a predicate value. Predicate holds

if true
➜ replace(): Carries out a transformation on conf

transition stage1_separation {
 global var conf;

 conf = rename(conf, stage2);

 if (!has_component(conf, fullstack)) return(false);

 if (has_constraint(conf, onpad)) return(false);

 conf = replace(fullstack, {..stack_stage_two, ..stage1});

 return (true);

}

20

SESoS Workshop, ICSE 2016

© 2005-present, Dewayne E Perry

ARiSE, UT Austin

Summary
➜ Began with our abstract architecture model

Ä Useful for modeling architecture elements in simulations
Ä Schedules for individual architecture elements describable as

constraints on the elements

➜ Initial extensions to model needed
Ä Differentiation of data, processing and connecting elements?
Ä Further development of connecting elements beyond typical

use

➜ To model complex simulations where physical changes
take place, propose the ideas of architecture
configurations and configuration graphs
Ä Notions of locus of control, threads
Ä Higher levels of scheduling
Ä Binding and rebinding of data
Ä Binding of threads to actual execution threads

