Modeling of Information Systems as Systems of Systems through DSM

Paolo Salvaneschi
University of Bergamo, Dept of Management, Information and Production Engineering and Salvaneschi & Partners
Table of contents

• Problem statement
• Case study context
• Modeling Information System through DSM
• Implementation
• Query patterns
• Discussion and outlook
Large information systems are composed of dozens of software applications. Software application: programs that typically implement a business process or part of it.
Problem statement

• Applications developed in house or acquired/adapted/integrated
• Applications evolve in time
• Different vendors and development teams work on parts of the whole system
Problem statement

• Due to time pressure and lack of global knowledge:
 – Local changes may cause decay of modularity and increasing complexity of relationships between software components
 – Increasing difficulty to understand the whole system
Problem statement

• The problem:
 understanding and managing knowledge about the Information System-level architecture where a software component is a software application

• The approach:
 Modeling the Information System as a System of Systems
 Preliminary results
Case study context

- Two information systems
 - System 1 - The Italian branch (more than 8000 employees) of a large European retail company. 100 applications + 3 large DB
 - System 2 - A hospital in North Italy (4000 employees). 100 applications
Modeling Information System through DSM

• Conceptual structure of the model
 – Components (software applications) and connectors
 – Classes of users
 – Views
 A representation of a specific aspect of the architecture: components and connectors attributes for a class of users
• Components and connectors - DSM
• Software applications and data flow relations between applications.
Modeling Information System through DSM

- Design Structure Matrix - Example
Modeling Information System through DSM

• System 1 Retail company
• *System 2 Hospital*
• Classes of users
 – Developers and system integrators - know the relations between applications
 – The architecture office - monitor the complexity, discover architectural smells, verify architectural rules
 – Business people - relationship between business processes and software applications
• Views
 – Software applications and data flow relations between applications
 – Types of connectors between applications
 – Architectural smells
 – Mapping between business processes and software applications
• Model quality
 – The information was derived manually from the documentation of software applications and knowledge of application owners
 – Automatically extract information from code is better, but hardly implementable in practice in an industrial context
Implementation

- Cambridge Advanced Modeler (CAM) tool
Query patterns

- Pattern name.
- Classes of users.
- View and model attributes.
- Model query.
- Explanations and suggestions.
- Example.
Query patterns

• Patterns

- Applications and data flow relations between applications.
- Databases and data flow relations with other applications.
- Applications and type of connectors between applications.
- Architectural smell: an application is connected to many other applications.
- Architectural smell: an application is connected through many types of connectors.
- Architectural smell: an application is connected to many databases.
- Architectural smell: a database of type data-warehouse has output connections with applications.
- Applications and connectors implementing the business process A, B, ...
Query patterns

System 1 – Smells

Application connected to many other applications.

Many types of connectors.
Query patterns

System 2 - applications and connectors implementing a business process
Discussion and outlook

• Finding quality information to develop the models is a difficult process
 – *System 1* - A wiki maintains the key information to support software evolution
 – *System 2* - The knowledge was collected through the interviews of the application owners.

• In both cases the management supported the project and is aware of the relevance of the issue
Discussion and outlook

• An open problem
• The limitations of the class of tools we used:
 – They don’t offer the full functionality of a database management system and flexible navigation of the graph
 – It is not easy to associate complex attributes to the elements of the matrix
 – The ability to query the graph is limited