
Building Dynamic, Long-
Running Systems

Steven P. Reiss
Brown University

TAIGA

Systems-of-Systems are common place

•  Modern applications (waze)
•  Applications using multiple data sources
•  Applications using multiple back ends
•  SoS will be the rule, not the exception

5/23/16 2

Context

TAIGA

It should be easy to write and maintain
such systems

•  Handling failure
•  Handling evolution
•  Dealing with security, privacy, efficiency
•  Handling data as well as control
•  And not on an ad hoc basis

5/23/16 3

Context

TAIGA

Systems are getting too big for one team to
build everything.

•  More reliance on open source solutions
•  Reliance on outside services
•  Crowd-sourced programming
•  Make use of code already written

5/23/16 4

PROBLEM I

TAIGA

Long-running systems of systems make use
of distributed components that both change
and fail.

•  Web services
•  Micro services
•  Remote calls
•  Open source servers
•  Phones and other devices

5/23/16 5

PROBLEM II

TAIGA

Applications should be able to make
effective use of dynamically changing
computing capabilities.

•  Connections to servers
•  Availability of local idle cycles
•  Phones and other portable devices
•  Automatic reconfiguration

5/23/16 6

PROBLEM III

TAIGA

Applications should be able to make use of
the data available from today’s many
devices.

•  Phones
•  Health monitors
•  Emergency handling
•  Cars
•  Internet of things

5/23/16 7

PROBLEM IV

TAIGA

New ways of thinking about long-running
programs built over distributed changing
systems.

•  Make them straightforward to code
•  Handle failures, transient and permanent
•  Handle evolution
•  Handle data

5/23/16 8

OBJECTIVE

TAIGA

•  Appropriate Model for Complex Systems
•  Component can be a system
•  Component can be a piece of a system
•  Component can be a library, class, …
•  Component can be data

•  Components
•  Written by one programmer (or a team)
•  Accessible by others
•  Are independent of an application

5/23/16 9

Component-Based Programming

TAIGA

Provides a basis for systems of systems

•  Natural hierarchical way of defining a system
•  Failures = component failures
•  Evolution = component evolution
•  Security = component security

5/23/16 10

Component-Based Programming

TAIGA

•  Current Trends
•  Web services
•  Peer-to-peer computing
•  Grid computing
•  Common platforms
•  Open source
•  Browser-based applications

•  What is the logical progression of
combining these?

5/23/16 11

TAIGA (2003)

TAIGA May 23, 2016 12

One World, One Program

•  Everything is connected
•  Programs communicate to get work done
•  Processing is distributed
•  Programs depend on each other’s data

and computation

There is only one program
And it runs everywhere and all the time

TAIGA May 23, 2016 13

Implications
•  How do you write a “program”
•  How to support large numbers of

programmers who don’t trust each other
•  Security and privacy
•  What are the economics of programming
•  Sharing data & files as well as code
•  Device-independent user interfaces
•  The environment is unstable
•  How to scale Internet-size

TAIGA May 23, 2016 14

TAIGA

A Framework for a “world program”
•  Demonstrate feasibility
•  Demonstrate scalability
•  Provide solutions to the basic problems

•  How to program
•  How to accommodate multiple programmers
•  How to handle security & privacy
•  Handling failure and evolution
•  Shared data, UI, code, computation, …
•  Making it work economically

TAIGA

•  Interface to a component
•  Java interface syntax
•  Functions, internal data types, static methods
•  Constructors as default factory

•  Semantics of the component
•  Test cases
•  Contracts

•  Other constraints
•  Cost model
•  Security model
•  Recovery model

5/23/16 15

Outerfaces

TAIGA

outerface edu.brown.cs.newsview.taiga.NewsParser {
 import java.util.Map;
 description {{
 This outerface parses a URL to determine the country or countries (or
 state or states) that are the topics of the corresponding stories
 }}
 trait { rebind = true; }
 class Parser {
 public static ValueMap scanUrl(String url);
 }
 interface class ValueMap {
 public Map<String,Number> world_values;
 public Map<String,Number> state_values;
 }
 testcase test0 {
 ValueMap rslt = Parser.scanUrl(“http://www.nytimes.com/...”);
 assert(rslt.get(“England”) != null);
 assert(rslt.get(“England”) > 0.5);
 }

}

5/23/16 16

Outerface Example

May 23, 2016 17

TAIGA
OUTERFACES

Package +
Semantics Package +

Semantics

IMPLEMENTATIONS

Outerfaces
+ Code Outerfaces

+ Code

TAIGA

•  Define a binding to an outerface
•  Can define multiple outerfaces
•  Does not have to be direct

•  Web service, RPC, External server, Library, …
•  Includes resource files

•  Define constraints
•  How it can be used (binding models)
•  Who can use it
•  Security and privacy
•  Cost

5/23/16 18

Implementations

TAIGA

implementation edu.brown.cs.newsview.taiga.QuickParser {

 import edu.brown.cs.newsview.qcrawl.QuickCrawlMap;
 import edu.brown.cs.newsview.qcrawl.QuickPageScan;

 resources "/u/spr/newsview" {
 "data/countries",
 "data/uscities",
 "data/usstates",
 "data/worldcities"
 }

 implements edu.brown.cs.newsview.taiga.NewsParser {
 using class Parser = edu.brown.cs.newsview.qcrawl.QuickPageScan;
 using interface class ValueMap = edu.brown.cs.newsview.qcrawl.QuickCrawlMap;
 }

 cost = 50;
}

5/23/16 19

Implementation Example

TAIGA

•  Peer-to-Peer backbone
•  Handles firewalls, failures, routing, …
•  Message-based, command-oriented
•  Simulated direct connections
•  Library system (offers and responses)

•  Encrypted point-to-point communication
•  Shared facilities
•  Distributed file access
•  Linda-like tuple space

5/23/16 20

TAIGA Network

TAIGA

•  TAIGA provides a starting point
•  How to upgrade it to handle today’s systems

of systems
•  Handling Data as first class objects
•  Data can be generated by anyone
•  Data can be used as needed
•  Data sources will evolve
•  Data sources will come and go

5/23/16 21

CHALLENGES

TAIGA

•  Today’s systems depend on data
•  Waze, health data in an emergency, …
•  Data is available in many forms

•  Standardize data in terms of components
•  Data Interface describes the data
•  Data Provider implements that interface

5/23/16 22

Data Components

TAIGA

•  Syntactic Definition
•  Available fields (structure/table definition)
•  Filters, aggregations, …

•  Semantic Definitions
•  Units, consistency properties, …

•  Other Considerations
•  Costs
•  Security, privacy, …

5/23/16 23

DataFaces

TAIGA

dataface edu.brown.cs.loadview.taiga.MachineLoad {
 String host_name;
 String host_id;
 double load_average;
 long up_time;
 int num_process;
 long total_memory;
 long memory_used;
 long total_swap;
 long swap_used;

 units {
 up_time : minutes, total_memory : bytes, memory_used : bytes, total_swap : bytes, swap_used : bytes
 }
 restricts {
 0 <= load_average;
 0 <= up_time;
 0 <= num_process;
 0 <= total_memory;
 0 <= memory_used <= total_memory;
 0 <= total_swap;
 0 <= swap_used <= total_swap
 }
} // end of dataface MachineLoad

5/23/16 24

DataFace Example

TAIGA

•  Provides access to the data
•  Returns dataface-determined structure
•  Handles unit conversions, mappings, etc.
•  Filter determines applicability

•  Multiple providers are supported
•  Providers register with the system

5/23/16 25

Data Provider

TAIGA

dataface implementation edu.brown.cs.loadview.taiga.LinuxMachineLoad {

 application edu.brown.cs.loadview.impl.LinuxLoadChecker;
 using edu.brown.cs.loadview.impl.LinuxMachineLoad;

 implements edu.brown.cs.loadview.taiga.MachineLoad {
 using host_name = host_name;
 using host_id = host_id;
 using load_average = load_average;
 using up_time = getUpTime();
 using num_process = num_processes;
 using total_memory = total_memory;
 using memory_used = memory_used;
 using total_swap = total_swap;
 }

 units {
 up_time : seconds,
 total_memory : kilobytes,
 memory_used : kilobytes,
 total_swap : kilobytes,
 swap_used : kilobytes
 }

} // end of dataface implementation LinuxMachineLoad

5/23/16 26

Data Provider Example

TAIGA

•  Applications access datafaces by queries
•  Stream-based SQL language
•  Translated into FILTER/AGGREGATE

•  Aggregation, filtering handled by system
•  Stream-based data processing
•  Client returned the aggregated fields

5/23/16 27

Data Access

TAIGA

•  Query
SELECT *
FROM MachineLoad
WHERE up_time > 30

•  Get the load structure from all machines
•  Given machine has been up > 30 minutes
•  Gets the data as it is generated

5/23/16 28

Sample Queries

TAIGA

•  COMPILED QUERY:
<DFACEQUERY WINDOW='60000' UID='sprtestquery1'>

 <DATAFACE>edu.brown.cs.loadview.taiga.MachineLoad</DATAFACE>
 <ACTION TYPE='FILTER'>
 <FIELD MIN='5' METHOD='getUpTime' />
 </ACTION>
 <ACTION TYPE='AGGREGATE‘>
 <GROUPBY METHOD='getHostName' SET='setHostName' VALUE='*' />
 <GROUPBY METHOD='getHostId' SET='setHostId' VALUE='*' />
 <COMPUTE METHOD='getLoadAverage' SET='setLoadAverage'
 OP='AVERAGE' />
 <COMPUTE METHOD='getUpTime' SET='setUpTime' OP='MAX' />
 <COMPUTE METHOD='getNumProcess' SET='setNumProcess' OP='SUM' />
 <COMPUTE METHOD='getTotalMemory' SET='setTotalMemory'
 OP='SUM' />
 <COMPUTE METHOD='getMemoryUsed' SET='setMemoryUsed'
 OP='SUM' />
 <COMPUTE METHOD='getTotalSwap' SET='setTotalSwap' OP='SUM' />
 <COMPUTE METHOD='getSwapUsed' SET='setSwapUsed'
 OP='AVERAGE' />
 </ACTION>

</DFACEQUERY>";
•  RESULT

•  Single MachineLoad generated every 60 seconds
•  Ignore host, hostid; compute the rest

5/23/16 29

Sample Query

TAIGA 5/23/16 30

Data Processing

Data
Server

Q

D

T Data
Server Q D

T

Data
Server

Q

D T

Data
Server

Q

D

T

Data
Server

Q

D

T

Client

Provider
Provider

Provider

Provider

TAIGA

•  Make use of the underlying network
•  Sets up a tree of data servers
•  One or more per ring

•  Servers create a tree for each query
•  Aggregation and filtering done locally

•  When possible
•  Timers + notification from children

•  Treat the network as a stream processor
•  Stream query language (SQL-like)

5/23/16 31

Data Processing

TAIGA

•  Efficient Query Processing
•  Scalable

•  Handling failure and evolution
•  Security and Privacy
•  Data provider can limit access

•  Based on filter
•  Based on minimum aggregation count

•  Data provider can provide approximate
results (Differential privacy)

5/23/16 32

On-Going Work

TAIGA 5/23/16 33

Dynamic Long-Running Systems

Long-Running SoS Application

Outerfaces
Syntax + Semantics +

Cost_Model + Security_Model

Datafaces
Syntax + Privacy_Model +

Cost_Model + Security_Model

Web
Service

Open
Source

Grid
Service

Automatic Dynamic Rebinding
Data Query Processing

Evolving, Dynamic Data Sources Evolving, Dynamic Implementations

TAIGA

TAIGA

•  Alternative semantic definitions
•  Better cost models
•  Allow dynamic reconfiguration

•  Better security models
•  Enhanced binding models
•  RESTful interfaces, micro services

•  Robustness and scalability
•  Fully integrating data and control
•  Where do we go from here?

5/23/16 34

Taiga Futures

May 23, 2016 CLIME Page 35

Questions and Comments

TAIGA

•  Takes multiple factors into account
•  Performance (on test cases) (CPU/memory)
•  Binding type (library, server, grid, web)
•  Traits
•  Cost of implementation

•  Designed for extensibility

5/23/16 36

Cost Model

TAIGA

•  Based on Java Security Model
•  Defines what operations can/can’t be done
•  Files, sockets, system info, class loading, …

•  Validated when testing
•  Testing done in a sandbox environment

•  Security context for library calls
•  Used to map resource files as well

•  Security context for applications
•  Sandboxed when possible

5/23/16 37

Security Model

TAIGA

•  TAIGA binds implementations to outerfaces
•  Binding is an explicit operation

•  Requires passing the tests and constraints
•  Generates a saved version of the implementation

•  Done automatically on first use
•  TAIGA finds implementations at run time
•  Using the economic model
•  Binds on the fly

•  Same user code works for all bindings
•  Programmer codes to outerface
•  Downloaded library, server, web service, grid

5/23/16 38

Binding Model

TAIGA

•  Finds a node to run the server on
•  Send out request to servers
•  With pertinent information

•  Servers
•  Look at request and decide if they want it
•  Respond yes/no (or ignore)

•  Binder chooses accepting server
•  Runs the service there

5/23/16 39

Grid-Binding

TAIGA

•  TAIGA maintains type consistency
•  Across implementations
•  Objects can be used with expected semantics
•  Collections are supported

•  Immutable if Java types
•  Mutable if TAIGA types

•  Types are mapped on calls and returns
•  Makes coding remote applications easier

5/23/16 40

Type Model

TAIGA

•  Complex systems fail in different ways
•  Network failures
•  Server failures
•  System failures (wrong result, unexpected

exceptions, contract failure, timeouts)
•  All can be viewed as component failures

•  Application should continue working in
the presence of failures

5/23/16 41

Failure Model

TAIGA

•  When an implementation fails
•  Either explicitly (call fails)
•  Or implicitly (contract fails, exception)

•  TAIGA will rebind the outerface
•  Unbinds the original binding
•  Applies the cost model to find an implementation
•  Validates the new implementation
•  Binds the new implementation

5/23/16 42

TAIGA Rebinding

TAIGA

outerface edu.brown.cs.webview.taiga.WebManager {

 description {{
 This outerface manages a set of files for the webview application, ensuring
 that they do not get too long. A transfer record is added to a file when it
 does exceed the 1M length limit
 }}

 trait { rebind=true; }

 class FileManager {
 static public String getCurrentFile();
 static public String getFileForDate(long date);
 }

 testcase Test0 {{
 public static void test() {

 FileManager.getCurrentFile();
 TaigaTesting.success();

 }
 }}

} // end of outerface WebManager

5/23/16 43

Outerface Example

TAIGA

outerface edu.brown.cs.newsview.taiga.NewsCrawler {
 import java.util.Map;
 description {{ This outerface periodically crawls a particular web site for news. }}
 trait { rebind=true; }
 requires edu.brown.cs.newsview.taiga.NewsParser;

 class Crawler {
 public Crawler(String baseurl,int level);
 public void addRoot(String root);
 public void setValidEnds(String ends);
 public void addIgnoreLinkPattern(String pat);
 public void setHome(String home);
 public void setTimeLimit(long time);
 public void setBase(String base);
 public ResultMap getValues();
 }

 interface class ResultMap {
 public Map<String,Number> world_values;
 public Map<String,Number> state_values;
 }
 cost { bind : GRID >>= 1, SERVER >>= 4; }
}

5/23/16 44

Outerface Example

TAIGA

outerface edu.brown.cs.newsview.taiga.NewsClient {
 description {{ ……. }}
 import java.util.*;
 requires edu.brown.cs.newsview.taiga.NewsCrawler, edu.brown.cs.newsview.taiga.NewsManager;
 trait { rebind=true; }
 class Client {
 model { Map<String,Number> source_set }
 public Client()
 model { source_set = new HashMap<String,Number>(); };
 public void addSource(String name,double weight)
 model { source_set.put(name,weight); };
 public void removeSource(String name)
 model { source_set.remove(name); };
 public ClientValueMap getValues();
 }
 interface class ClientValueMap {
 public Map<String,Number> world_values;
 public Map<String,Number> state_values;
 }
}

5/23/16 45

Outerface Example

TAIGA

implementation edu.brown.cs.webview.taiga.SimpleManager {
 using edu.brown.cs.webview.recorder.RecorderManager;
 implements edu.brown.cs.webview.taiga.WebManager {
 using class FileManager =

 edu.brown.cs.webview.recorder.RecorderManager;
 }
 cost = 40;
 available *;
}

5/23/16 46

Implementation Example

TAIGA

•  Peer-to-peer backbone has to be secure
•  Clients are who they say they are
•  Clients are running proper code
•  Clients are limited to particular domains
•  Add a notion of identity

•  Create a private version of TAIGA
•  In addition to the public, everywhere version

5/23/16 47

Security Extensions

TAIGA

•  Test cases & contracts are limiting
•  Broader than formal specifications
•  But still difficult to define in many cases

•  Going beyond test cases
•  Partial specifications
•  Pseudo-code, frameworks, sketches, …
•  Interaction with the programmer

5/23/16 48

Semantic Definitions

TAIGA

•  TAIGA is a prototype
•  P2P network needs work
•  Unbinding of libraries not clean
•  Sandboxed execution of tests
•  Can be much more efficient
•  No phone-based implementation

•  Needs to work with 1000s of nodes
•  Only tested with ~100
•  Generally running with ~10

5/23/16 49

Deploying at Scale

